<<
>>

Методы экологии


Методическую основу современной экологии составляет сочетание системного подхода, натурных наблюдений, эксперимента и моделирования. Системный подход пронизывает большинство экологических исследований, так как любой объект экологии представляет собой систему или часть системы в силу всеобщей связи элементов живой природы.
Разнообразие исследовательских и прикладных задач влечет за собой и разнообразие применяемых в экологии методов. Их можно объединить в несколько групп.
Методы регистрации и оценки состояния среды являются необходимой частью любого экологического исследования. К ним относятся метеорологические наблюдения; измерения температуры, прозрачности, солености и химического состава воды; определение характеристик почвенной среды, измерения освещенности, радиационного фона, напряженности физических полей, определение химической и бактериальной загрязненности среды и т.п. Эколог вынужден иногда вносить специальные изменения в технику этих измерений и проявлять немалую изобретательность, когда, например, нужно измерить температуру в гнезде высиживающей птенцов дикой птицы, определить состав воздуха в норе спящего сурка или уловить ничтожные колебания гравитационного и магнитного полей, по которым некоторые животные чувствуют приближение землетрясения.
К этой же группе методов следует отнести периодическое или непрерывное слежение — мониторинг — за состоянием экологических объектов и за качеством среды. Большое практическое значение имеет регистрация состава и количества вредных примесей в воде, воздухе, почве, растениях в зонах антропогенного, загрязнения, а также исследования переноса загрязнителей в разных средах. rB настоящее время техника экологического мониторинга быстро развивается, используя новейшие методы физико-химического и химического экспресс-анализа, дистанционного зондирования, телеметрии и компьютерной обработки данных. Важным средством экологического мониторинга, позволяющим в ряде случаев получить интегральную оценку качества среды, является биомониторинг и биоиндикация — использование для контроля состояния среды некоторых организмов, особо чувствительных к изменениям среды и к появлению в ней вредных примесей.
Методы количественного учета организмов и методы оценки биомассы и продуктивности растений и животных лежат в основе изучения природных сообществ. Для этого применяются подсчеты особей на контрольных площадках, в объемах воды или почвы, маршрутные учеты, отлов и мечение животных, наблюдения за их перемещениями с помощью телеметрии и другие средства вплоть до аэрокосмической регистрации численности стад, скоплений рыбы, густоты древостоя, состояния посевов и урожайности полей. Изучение динамики численности популяций потребовало введения в экологию методов демографии. Все это необходимо для овладения управлением экосистемами, для предотвращения гибели видов и сохранением биологического разнообразия и био- продукгивности экосистем.
Исследования влияния факторов среды на жизнедеятельность организмов составляют наиболее разнообразную группу методов экологии. В их число входят различные, подчас сложные и длительные наблюдения в природе. Ho чаще применяются экспериментальные подходы, когда в лабораторных условиях регистрируется воздействие строго контролируемого фактора на те или иные функции растений или животных, а также анализируется применимость полученных на животных результатов к экологии человека.
Этим путем устанавливаются оптимальные или граничные условия существования. Так определяются критические и летальные дозы химических и других агентов, по которым рассчитывают предельно допустимые концентрации и воздействия, лежащие в основе экологического нормирования. Ясно, что в данном случае экология смыкается с физиологией, биохимией, токсикологией. Эколог использует применяемую в этих дисциплинах экспериментальную технику. Методы этой категории важны также при определении устойчивости экосистем и изучении адаптаций - приспособлений растений, животных и человека к различным условиям среды.
Методы изучения взаимоотношений между организмами во многовидовых сообществах составляют важную часть системной экологии. Здесь также важны натурные наблюдения и лабораторные исследования пищевых отношений, пищевого поведения, опыты с переносом «меток», например, радиоактивных изотопов, с помощью которых можно определить, сколько органического вещества и энергии переходит от одного звена пищевой цепи к другому: от растений — к травоядным животным, от травоядных — к хищникам. Особо следует упомянуть экспериментальную методику создания и исследования искусственных сообществ и экосистем, т.е. по существу лабораторное натурное моделирование взаимодействий организмов друг с другом и с окружающей средой. В ряде случаев для этих целей создают искусственные частично замкнутые и самоподдержи- вающиеся многовидовые системы — микрокосмы. Известны такие эксперименты с участием человека — «Биос-6» (Красноярск, Россия), «Биосфера-2» (Калифорния, США).
Методы математического моделирования приобретают все большее значение в экологии. Потребность в них для целей управления и прогнозирования очень велика. Существуют близкие к реальным процессам математические модели техногенных эмиссий, распространения загрязнителей в атмосфере, самоочищения реки. Намного сложнее моделирование экологических систем. В свое время были получены обобщенные аналитические модели многих экологических процессов. Ho реальные объекты экологии столь сложны, что с трудом поддаются строгому математическому описанию даже при значительном упрощении задач. Поскольку в большинстве случаев речь идет о многоуровневых нелинейных задачах с большим числом переменных, аналитические решения практически невозможны, и на первое место выдвигаются численные методы имитационного моделирования, основанные на применении современной вычислительной техники.
В последние годы благодаря мощным компьютерам нового поколения и новым средствам программирования появилась возможность численного решения ряда сложных системных экологических задач. При этом все большее значение приобретают такие новые компьютерные методы, как применение технологии нейронных сетей и аппарата теории нечетких множеств. Быстро совершенствуются приемы глобального моделирования, доведенные до моделей, основанных на проблемно-прогнозном подходе. Они позволяют рассматривать варианты сценариев и строить обоснованные прогнозы глобального развития.
Методы прикладной экологии быстро развиваются. Ее важными средствами становятся: создание геоинформационных систем (ГИС-технологий) и банков экологической информации, относящихся к различным регионам, территориям, ландшафтам, агросистемам, промышленным центрам, городам; комплексный эколого-экономический анализ состояния территорий для целей экологической диагностики и оздоровления эколошческой обстановки; методы ииженерно-эколошческих изысканий, необходимых для оптимального размещения, проектирования, строительства и реконструкции гражданских и хозяйственных объектов; методы экологически ориентированного проектирования хозяйственных и гражданских объектов, основанные на принципах и расчетах экологического соответствия; технологические методы снижения коэффициентов вредного действия производственных комплексов, процессов, устройств и изделий; методы оценки влияния техногенных загрязнений и деградации окружающей среды на здоровье людей; методы контроля экологической регламентации хозяйственной деятельности: экологический мониторинг; экологическая аттестация и паспортизация хозяйственных объектов, предприятий, природно-производственных комплексов, территорий; экологическая экспертиза; оценка ожидаемых воздействий проектируемых и строящихся объектов на окружающую среду (ОВОС). 
<< | >>
Источник: Акимова Т.А., Хаскин В.В.. Экология: Учебник для вузов. 1999 {original}

Еще по теме Методы экологии:

  1. Миркин Б. М., Наумова Л. Г.. Краткий курс общей экологии. Часть I: Экология видов и популяций: Учебник., 2011
  2. Розенберг Г.С., Мозговой Д.П., Гелашвили Д.Б.. Экология. Элементы теоретических конструкций современной экологии (Учебное пособие), 2000
  3. Миркин Б. М., Наумова Л. Г.. Краткий курс общей экологии. Часть II: Экология экосистем и биосферы: Учебник., 2011
  4. Денисов В.В., Гутенев В.В., Луганская И.А. и др. Экология., 2002
  5. § 5. Метод неделимых как выпрямление метода исчерпывания.
  6. I.2. Структура общей экологии
  7. СИСТЕМНАЯ ЭКОЛОГИЯ
  8. ОБЩАЯ И МЕДИЦИНСКАЯ ЭКОЛОГИЯ
  9. Тема 4 ЭКОЛОГИЯ И ЭТНОГЕНЕЗ
  10. Введение в системную экологию
  11. ЧЕЛОВЕК. СОЦИАЛЬНАЯ ЭКОЛОГИЯ
  12. Одум Ю.. Экология: В 2-х т. Т. I, 1986
  13. Введение: предмет экологии